Amici della Scienza

Per la prima volta, i fisici hanno calcolato esattamente quale tipo di singolarità si trova al centro di un buco nero realistico.

Nel gennaio del 1916, Karl Schwarzschild, un fisico tedesco di stanza come soldato sul fronte orientale, produsse la prima soluzione esatta alle equazioni della relatività generale, la radicale teoria della gravità di due mesi di Albert Einstein. La relatività generale rappresentava la gravità non come una forza attrattiva, come era stata a lungo compresa, ma piuttosto come l’effetto dello spazio e del tempo curvi. La soluzione di Schwarzschild ha rivelato la curvatura dello spazio-tempo attorno a una sfera stazionaria della materia.

Curiosamente, Schwarzschild notò che se questa materia fosse confinata in un raggio abbastanza piccolo, ci sarebbe un punto di curvatura e densità infinite – una “singolarità” – al centro.

Gli infiniti che affiorano in fisica di solito sono motivo di allarme, e né Einstein, dopo aver appreso il risultato del soldato, né Schwarzschild stesso credevano che tali oggetti esistessero davvero. Ma a partire dagli anni ’70, è emersa la prova che l’universo contiene una massa di queste entità – soprannominate “buchi neri” perché la loro gravità è così forte che non può venire fuori nulla che entri in loro, nemmeno la luce. Da allora la natura delle singolarità all’interno dei buchi neri è stata un mistero.

singolarità

Di recente, un team di ricercatori affiliati alla Black Hole Initiative (BHI) dell’Università di Harvard ha compiuto progressi significativi in ​​questo enigma. Paul Chesler , Ramesh Narayan ed Erik Curiel hanno sondato gli interni dei teorici buchi neri che assomigliano a quelli studiati dagli astronomi, cercando di determinare quale tipo di singolarità si trova all’interno. Una singolarità non è un luogo in cui le quantità diventano davvero infinite, ma “un luogo in cui si rompe la relatività generale”, ha spiegato Chesler. A quel punto, si pensa che la relatività generale ceda a una descrizione più esatta, per quanto sconosciuta, della gravità della scala quantistica. Ma ci sono tre modi diversi in cui la teoria di Einstein può andare in tilt, portando a tre diversi tipi di possibili singolarità. “Sapere quando e dove si rompe la relatività generale è utile per sapere quale teoria [della gravità quantistica] si trova al di là di essa”, ha detto Chesler.

Il gruppo BHI si basò su un importante progresso realizzato nel 1963, quando il matematico Roy Kerr risolse le equazioni di Einstein per un buco nero che ruota – una situazione più realistica di quella che Schwarzschild affrontò poiché praticamente tutto nell’universo ruota. Questo problema era più grave di quello di Schwarzschild, perché gli oggetti rotanti hanno rigonfiamenti al centro e quindi privi di simmetria sferica. La soluzione di Kerr descrisse in modo inequivocabile la regione al di fuori di un buco nero che ruota, ma non il suo interno.

Il buco nero di Kerr era ancora un po ‘irrealistico, poiché occupava uno spazio privo di materia. Questo, hanno capito i ricercatori di BHI, ha avuto l’effetto di rendere instabile la soluzione; l’aggiunta di una sola particella potrebbe cambiare drasticamente la geometria spazio-temporale interna del buco nero. Nel tentativo di rendere il loro modello più realistico e più stabile, hanno spruzzato materia di un tipo speciale chiamato “campo scalare elementare” dentro e intorno al loro teorico buco nero. E mentre la soluzione originale di Kerr riguardava un buco nero “eterno” che è sempre stato lì, i buchi neri nella loro analisi si sono formati dal collasso gravitazionale, come quelli che abbondano nel cosmo.

Innanzitutto, Chesler, Narayan e Curiel hanno testato la loro metodologia su un buco nero sferico carico, non rotante, formato dal collasso gravitazionale della materia in un campo scalare elementare. Hanno dettagliato i loro risultati in un articolo pubblicato sul sito scientifico di prestampa arxiv.org a febbraio. Successivamente, Chesler ha affrontato le equazioni più complicate relative a un buco nero rotante similmente formato, riportando i suoi risultati da solista tre mesi dopo.

Le loro analisi hanno mostrato che entrambi i tipi di buchi neri contengono due distinti tipi di singolarità. Un buco nero è racchiuso in una sfera chiamata orizzonte degli eventi: una volta che la materia o la luce attraversano questo confine invisibile ed entrano nel buco nero, non può fuggire. All’interno dell’orizzonte degli eventi, è noto che i buchi neri fissi e rotanti hanno una seconda superficie sferica senza ritorno, chiamata orizzonte interno. Chesler e i suoi colleghi hanno scoperto che per i buchi neri hanno studiato, una singolarità “nulla” si forma inevitabilmente all’orizzonte interno, una scoperta coerente con i risultati precedenti. La materia e le radiazioni possono passare attraverso questo tipo di singolarità per gran parte della vita del buco nero, ha spiegato Chesler, ma col passare del tempo la curvatura spazio-temporale cresce esponenzialmente, “diventando infinita in tempi infinitamente tardivi”.

“Questa è la prima volta che una derivazione così diretta è stata data per il verificarsi di una singolarità spaziale all’interno dei buchi neri rotanti.” Amos Ori

I fisici più desideravano scoprire se i loro buchi neri quasi realistici hanno una singolarità centrale – un fatto che era stato stabilito solo per certi semplici buchi neri di Schwarzschild. E se c’è una singolarità centrale, hanno voluto determinare se si tratta di “simile ad uno spazio” o “simile al tempo”. Questi termini derivano dal fatto che una volta che una particella si avvicina a una singolarità simile ad uno spazio, non è possibile evolvere le equazioni della relatività generale in avanti in tempo; l’evoluzione è consentita solo lungo la direzione dello spazio. Al contrario, una particella che si avvicina a una singolarità simile al tempo non sarà inesorabilmente disegnata all’interno; ha ancora un futuro possibile e può quindi avanzare nel tempo, sebbene la sua posizione nello spazio sia fissa. Gli osservatori esterni non possono vedere le singolarità spaziali perché le onde luminose si muovono sempre in esse e non escono mai.

Di questi due tipi, una singolarità spaziale può essere preferibile ai fisici perché la relatività generale si rompe solo nel punto della singolarità stessa. Per una singolarità simile al tempo, la teoria vacilla ovunque intorno a quel punto. Un fisico non ha modo di prevedere, per esempio, se la radiazione emergerà da una singolarità simile al tempo e quale potrebbe essere la sua intensità o ampiezza.

Il gruppo ha scoperto che per entrambi i tipi di buchi neri hanno esaminato, c’è davvero una singolarità centrale, ed è sempre spaziale. Ciò è stato ipotizzato da molti, se non dalla maggior parte, astrofisici che avevano un’opinione, ha osservato Chesler, “ma non era noto per certo”.

Il fisico Amos Ori , un esperto di buchi neri al Technion di Haifa, in Israele, ha detto del nuovo documento di Chesler: “Per quanto ne sappia, questa è la prima volta che una derivazione così diretta è stata data per il verificarsi di una specie spaziale singolarità dentro i buchi neri che ruotano. ”

Gaurav Khanna, un fisico dell’Università del Massachusetts, Dartmouth, che indaga anche sulle singolarità del buco nero, ha definito gli studi del team BHI “grandi progressi – un salto di qualità al di là dei precedenti sforzi in questo settore”.

Mentre Chesler e i suoi collaboratori hanno rafforzato il caso secondo cui i buchi neri astrofisici hanno singolarità spaziali ai loro nuclei, non lo hanno ancora dimostrato. Il loro prossimo passo è fare calcoli più realistici che vadano oltre i campi scalari elementari e incorporino forme più disordinate di materia e radiazione.

Chesler ha sottolineato che le singolarità che compaiono nei calcoli del buco nero dovrebbero scomparire quando i fisici elaborano una teoria quantistica della gravità in grado di gestire le condizioni estreme che si trovano in quei punti. Secondo Chesler, l’atto di spingere la teoria di Einstein ai suoi limiti e vedere esattamente come fallisce “può guidarti nella costruzione della prossima teoria”.

Entanglement, la sostanza di cui è fatto lo spaziotempo

E se la risposta alla “domanda fondamentale sulla vita, sull’universo e tutto quanto” non fosse “42”, come calcolò in sette milioni e mezzo di anni il computer protagonista della “Guida galattica per gli autostoppisti” di Douglas Adams, bensì “entanglement”? È da decenni che fisici di tutto il pianeta sono alla ricerca della teoria con la ‘T’ maiuscola, quella in grado di far convivere meccanica quantistica e gravità – o meccanica quantistica e relatività generale, dove la gravità viene a coincidere con la geometria dello spaziotempo. Ebbene, il trait-d’union fra le due potrebbe essere proprio l’entanglement. A sostenerlo, ricorda questa settimana un approfondimento a firma di Ron Cowen apparso sull’ultimo numero di Nature, a sostenere quest’inedito ruolo dell’entanglement, dicevamo, è il fisico della British Columbia University Mark Van Raamsdonk. Benché alieno alla nostra concezione della natura al punto da venir ripudiato dallo stesso Einstein, il fenomeno dell’entanglement fa capolino con regolarità infallibile non solo dalle equazioni della meccanica quantistica ma anche – senza mai perdere un colpo – dagli innumerevoli esperimenti che si sono susseguiti negli ultimi decenni nei laboratori di mezzo mondo. Insomma, sull’esistenza d’un legame ineffabile quanto profondo fra coppie di particelle tale da mettere in imbarazzo qualunque ragionevole assunto su causalità e località, velocità della luce in testa, sulla realtà di questa liaison dangereuse non c’è più alcun dubbio. Nella visione di Van Raamsdonk, però, visione che poggia su entità matematiche come il cosiddetto “spazio anti-de Sitter e sulla congettura di Juan Maldacena e Leonard Susskind, l’entanglement non si limiterebbe ad essere una bizzarra proprietà della meccanica quantistica. Sarebbe nientemeno che ciò di cui è fatta la geometria dell’universo. Detto altrimenti, se già Maldacena e Susskind avevano proposto una sorta d’equivalenza fra i concetti d’entanglement e wormhole – il tunnel che collega i pozzi gravitazionali scavati nella trama dello spaziotempo in corrispondenza dei buchi neri – ebbene, le equazioni di Van Raamsdonk spostano le conseguenze di quell’equivalenza un passo più in là, facendo intravedere una corrispondenza fra entanglement e la stessa geometria dell’universo: in altre parole, nella trama dello spaziotempo, il materiale della trama sarebbe proprio l’entanglement, quella inquietante azione a distanza che tanto sconcertava Einstein. Servizio di Marco Malaspina

Riferimenti e approfondimenti

  1. Singularities in Reissner-Nordström black holes – Paul M. CheslerRamesh NarayanErik Curiel.  arXiv:1902.08323v2 
  2. Singularities in rotating black holes coupled to a massless scalar field – Paul M. CheslerarXiv:1905.04613v1 
0 0 vote
Article Rating
Subscribe
Notificami
guest
0 Commenti
Inline Feedbacks
View all comments
Translate »
0
Would love your thoughts, please comment.x
()
x